
The thinnest of all the viscous layers examined above is induced on their surfaces for 
the flow around the roughnesses (6.1) ("thick" in the terminology of [2]). Hence, domains 
2 and 1 are perturbed only by the shape of the roughness, and in this case the Prandtl 
spatial boundary layer equations with a given pressure distribution must be solved (the boun- 
dary value problem (5.2), (5.3), (5.9), (6.2), (6.5), and (6.6), the line HI in Fig. 2). 

It is obtained in [2] that because of the diminution of the transverse velocity compo- 
nent w in order of magnitude during passage from the flow around non-narrow roughnesses 
(c ~ b) on a flat plate to narrow (c < b) the perturbation transmission upstream disappears 
for them. If the roughness is on a curved surface, then Apl and Ap2 have identical signs 
for a concave surface and different signs for a convex. Consequently, for narrow roughnes- 
ses on a concave surface the total pressure perturbation is greater than for roughnesses on 
a flat surface. This results in an increase in the transverse velocity component w and the 
origination of upstream perturbation transmission [3, 4]. For roughnesses on convex sur- 
faces such a phenomenon should not be realized. 
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STEADY SURFACING OF A SINGLE BUBBLE 

IN AN INFINITE VOLUME OF LIQUID 

P. K. Volkov and E. A. Chinnov UDC 532.529.6 

The motion of individual gas bubbles has long been an object of investigation. Impor- 
tant theoretical solutions have been obtained and a sizable body of experimental data has 
been accumulated. Recent years have seen the broad use of numerical methods to solve the 
Navier--Stokes equations with an unknown boundary in regard to the study of bubble motion 
[i, 2]. 

Here, we use numerical solutions that we obtained to the complete Navier--Stokes equa- 
tions and the results of an experiment to analyze the simultaneous effect of the viscosity 
of the liquid and surface tension on the rate of surfacing and form of individual bubbles. 
We also determine the limits of disturbance of the sphericity of gas bubbles and the forma- 
tion of eddies in the rear part of the bubbles. 

We examine the steady surfacing of an axisymmetric bubble with the boundary F. The 
volume of the bubble is constant, as is the pressure inside it. We introduce cartesian 
coordinate system xl, x2, x3, connected with the center of the bubble. The x3 axis is 
directed along the upward velocity of the gas cavity, u, n is the unit vector of an outward 
normal to r, r is the unit vector of a tangent to F. The motion of the viscous liquid out- 
side the closed surface F is described by the system of equations 

(vv)  v + VP/P = vAv,  VV = O, (1)  

where p is the modified pressure function: p = q + pgx3 -- Po; q is the pressure in the 
liquid; po is the pressure at the level x3 = 0; g is acceleration due to gravity; 0 is the 
density of the liquid; v is the kinematic viscosity of the liquid. 

The following conditions are satisfied on the free boundary F: impermeability 
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Fig. 1 

v . n  = O; (2) 

triviality of the shear stresses in the liquid 

T.T.n  = 0; (3) 

equality of the difference of the normal stresses on the bubble surface to the capillary 
pressure oK 

p - -  2pv(n.T.n)+oK =pg--po+gpx~. (4) 

t [av~ ab~ 
Here, Tq= ~ - ~ x j + ~ j  is the strain-rate tensor; pg is the pressure of the gas in the bub- 

ble; K is the curvature of the surface s o is surface tension. 

At infinity 

v =  --u. (5) 

Problem (1)-(5) is solved numerically in the variables curl m--stream function 4. The 
problem is solved by the iteration method using a scheme that employs a stabilizing correc- 
tion. The algorithm was examined in detail in [i, 2]. Problem (1)-(5) contains the follow- 
ing parameters which are important for the process being examined: p, v, o, g, R, pg -- Po, 
u (R is the radius of a sphere equivalent in volume to the bubble). 

It should be noted that the solution depends only on the difference between the pres- 
sures pg -- po. It is also evident that we cannot arbitrarily assign R and pg -- po in the 
given liquid, since it follows from (4) with u = 0 and g = 0 that we have a spherical bubble 
and 

2~/R=pg--po (6) 

for any p and v. Five of the above seven quantities are independent and, in accordance with 
dimensional theory, there are two independent dimensionless parameters. Since the choice 
of the determining variables is to a certain extent arbitrary, different dimensionless 
criteria are used when examining the motion of individual bubbles. At first glance, the use 
of the length scale L = o/(pg -- Po) (following [i]) avoids the difficulties connected with 
the fact that (i) contains the pressure gradient p. However, in the numerical solution, the 
fact that (4) contains the function p -- which is calculated with the integration of (i) -- 
makes it necessary to unambiguously determine this function. This can be done as follows. 
With allowance for the choice of L, it follows from (6) that R ~ 2L (which corresponds to 
the solution of (4) with We = 0, We = pLu2/o). We find the stream function and the curl and 
we determine p from (I). Since the liquid and the bubble are in equilibrium, then the integ- 
ral of p over the bubble surface must be equal to zero. This condition allows us to find po 
and, thus, the pressure function. 

9O 



Fig. 2 

The quantities Re* (Re* = uL/~) and We were used in [2] as the determining criteria, 
Re = 2uR/~, E = 4pgR2/o, were used in [3], while the authors of [4] proposed the use of the 
criteria M = p3~g/o3, m/mo (Ro = [~ 2/(pg2)]i/5). 

The choice of criteria for analyzing bubble motion depends mainly on how convenient 
their use is for obtaining information of practical importance on the process and how simply 
they allow the process to be described. 

In practice, flow-rate characteristics of the process are commonly used. In the present 

case, we are employing the volume of the bubble or its equivalent radius R. As it has 
turned out [5-7], it is convenient to use the following characteristic scales to describe 
the motion of gas--liquid systems: ~ = (2/g) i/3 __ the viscous-gravitational interaction 
constant; 60 = [o/(pg)] ~ -- the capillary constant. If we relate these scales to the char- 
acteristic dimension of the problem, we can determine the degree to which a given type of 
interaction occurs in the given process. Thus, we have two determining criteria: R~ = 

-~|(Pu2)(gPR)|I/:3==(Re/2Ps)I/~ shows the relative effect of inertial forces in the liquid, H 

j 
molecular friction, and ejection and is a unique analog of the Reynolds number for processes 

R = [pgB 1 =~VE characterizes the in which motion is due to buoyancy (Ps = vu/gR2); Ro =~ [o-TRJ 

relative effect of buoyancy and surface tension. These criteria have two important proper- 
ties. First, they do not contain bubble velocity. Second, their ratio represents a complex 
which consists only of physical characteristics of the medium: 

Ra!R v = 6v/6 o = (OSv4g/o3)U 6 : MU6. 

T h e s e  p r o p e r t i e s  s i m p l i f y  t h e  d e s c r i p t i o n  of  t h e  p r o c e s s  c o n s i d e r a b l y .  T h u s ,  on a d i a g r a m  
w i t h  t h e  c o o r d i n a t e s  R v and  Ro, l i n e s  r e p r e s e n t i n g  c o n s t a n t  v a l u e s  o f  M w i l l  be  s t r a i g h t  
r a t h e r  t h a n  c u r v e d  (as  i n  t h e  d i a g r a m  i n  [ 3 ] ) .  The r a t e  o f  s u r f a c i n g  of  t h e  b u b b l e  i s  c o n -  
t a i n e d  o n l y  i n  t h e  d e t e r m i n i n g  c r i t e r i o n  (F r  = u 2 / g R ) ,  w h i c h  makes i t  p o s s i b l e  t o  o b t a i n  
i n f o r m a t i o n  on i t  d i r e c t l y  f rom t h e  d i a g r a m s .  A b u b b l e  s u r f a c i n g  i n  a l i q u i d  may t a k e  d i f -  
f e r e n t  f o r m s ,  d e p e n d i n g  on t h e  s i z e  and  p h y s i c a l  c h a r a c t e r i s t i c s  o f  t h e  medium.  

F i g u r e  1 shows d a t a  on t h e  s u r f a c i n g  o f  s i n g l e  b u b b l e s  i n  a d i a g r a m  w i t h  t h e  c o o r d i -  
n a t e s  R~ and  R o. H e r e ,  we e x a m i n e  t h e  c h a n g e  i n  t h e  form o f  t he  b u b b l e s  and  t h e  f o r m a t i o n  o f  
e d d i e s  b e h i n d  them i n  t h e  c o m p l e x  and  l i t t l e - s t u d i e d  t r a n s i t i o n a l  r e g i o n s ,  w h e r e  t h e  e f f e c t  
o f  a l l  o f  t h e  d e t e r m i n i n g  p a r a m e t e r s  i s  s u b s t a n t i a l .  R e g i o n s  i n  w h i c h  b u b b l e s  a r e  p r e s e n t  
w i t h  a gas  f i l m  i n  t h e  fo rm o f  a " s k i r t "  and an  open  wake [8] a r e  n o t  i n d i c a t e d  i n  t h e  
f i g u r e .  The number  I d e n o t e s  t h e  r e g i o n  i n  w h i c h  t h e  s u r f a c i n g  b u b b l e s  h a v e  a s p h e r i c a l  
fo rm.  The m a i n  c h a r a c t e r i s t i c  d e f i n i n g  t h e  b o u n d a r y  o f  t h i s  r e g i o n  i s  t h e  d e g r e e  o f  d e f o r -  
m a t i o n  o f  t h e  b u b b l e  e = (a  - -  b ) / a  (a i s  t h e  h o r i z o n t a l  d i m e n s i o n  o f  t h e  b u b b l e  and  b i s  
i t s  v e r t i c a l  d i m e n s i o n ) .  The d i a g r a m  shows d a t a  f rom t h e  n u m e r i c a l  s o l u t i o n  of  p r o b l e m  
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(1)-(5) and from experiments (points I), which indicate that the bubbles are deformed 0.5% 
(e = 0.005). Sphericity is considered to have been disturbed when the bubble deformation is 
greater than 1%. The diagram shows both numerical and empirical results corresponding to 
values of e in the 2-3% range (points 2). The solid line delineating the region I was deter- 
mined by the expression R~P~ = 1.4. 

Deformed bubbles can take different forms. The form of bubbles surfacing in water and 
other low-viscosity liquids is close to an ellipsoid of revolution [9, i0]. In more viscous 
media, the shape of bubbles is similar to an axisymmetric oblate ellipsoid (Fig. 2a, R~ = 
1.14, R a = 1.67). At Ro>~t  , M ~ 3 . 1 0  -a, R, Ro '~2 .5  (region Ill, Fig. I), the symmetry of 
the surfacing bubble relative to the horizontal axis is disturbed. The dashed line construc- 
ted on the basis of the data we obtained indicates that the symmetry of the bubble is dis- 
turbed 3%. The characteristic form of the bubble satisfying these conditions is shown in 
Fig. 2b (R9 = 1.5, R a = 2.15). Region III is a region of transition to region IV, where the 
bubbles are oblate ellipsoids. Region IV was examined in detail in [8]. In region III, the 
effect of surface tension begins to weaken (R,~I), but viscosity has not yet become the 
predominant factor in the bubble-surfacing mechanism [8]. 

Figure i shows the results of numerical solution of problem (1-5) (points 3), where we 
recorded the creation of an eddy in the rear part of the bubble. Some of these results are 
shown in Fig. 3. At Ra = 3.0 and R9 = 2.1 (Fig. 3a), an eddy is formed in the lower part of 
a bubble which is already quite nonsymmetrical relative to the horizontal axis. In this 
case, the form of the bubble is closer to a sphere than an oblate ellipsoid. The curve cor- 
responding to the beginning of eddy formation at Ra~2.5 follows the dashed line indicating 
the disturbance of the symmetry of the bubble. This means that, in this case, the beginning 
of eddy formation behind the bubble depends to a considerable extent on the degree of its 
asymmetry. 

At R~ < 2.5, the numerical data corresponding to the creation of an eddy behind the 
bubble is represented by the solid line RvP~ = 9. It can be seen from Fig. 3, b-d (R~ = 3.9; 
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6.3; 13.3 and R o = 2.4; 1.4; 0.64, respectively) that the bubbles are more oblate in this 
case. Meanwhile, at M < 3"10 -5 , the bubbles are symmetrical relative to the horizontal 
axis (d). 

Whereas Fig. 3, a and c, shows the theoretical shapes of bubbles with an eddy in their 
lower part about the vertical symmetry axis, it is evident from Fig. 3b, corresponding to 
the inflection point on the solid curve, that the eddy is formed closer to the edges of the 
bubble. Thus, we can qualitatively distinguish three types of eddy formation behind a bub- 
ble and three corresponding regions IV-VI. In regions IV and V, the motion of bubbles is 
rectilinear and their shape is nonsymmetrical relative to the horizontal axis. At the boun- 
dary of region VI, the form of the bubbles is symmetrical. Figure 3d shows the results of 
numerical calculation of flow around a bubble before the formation of the eddy at its rear 
(point 4 in Fig. i). In the calculation of such a bubble, the number of iterations 
increases sharply compared to the calculation of bubbles with smaller values of R v and R o. 
We were generally unsuccessful in advancing beyond this point, since a steady-state regime 
could not be established in the calculations with a further increase in R o. This is evi- 
dently related to the fact that the formation of an eddy in the rear of the bubble leads to 
loss of stability of the rectilinear motion. Figure 1 shows experimental data from [ii] 
indicating the beginning of rectilinear motion of bubbles (points 5). The figure also shows 
our test data (points 6) corresponding to the motion of bubbles in a spiral. 

Figure 4 shows the simultaneous effect of the criteria Rv and R o on the dimensionless 
velocity (Froude number) of a bubble. Along with our data, the figure shows results from 
[12-15]. The designations of the bubble surfacing regimes corresponds to Fig. i. The 
dashed curves correspond to constant values of Fr. In limiting cases of similarity with 
respect to one or two of the determining parameters (regions I, IV, VI, VII), the bubble 
surfacing law can be described by familiar relations. In transitional regions II, IIl, and 
V, the diagram in Fig. 4 can be used to evaluate Fr and, thus, the rate of bubble rise. 
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